Low‐head dam fragmentation, habitat alteration, and invasive predators degrade a Western United States stream fish assemblage

Author:

Haworth Matthew R.1ORCID,Bestgen Kevin R.1ORCID

Affiliation:

1. Larval Fish Laboratory, Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA

Abstract

AbstractDams fragment streams, alter hydrology and habitat, and facilitate establishment of nonnative species worldwide to the detriment of native biota. Understanding and mitigating these effects to conserve and restore stream fish assemblages has relied on short‐ and long‐term datasets to assess acute and chronic change through time, craft management strategies, and measure remediation success. We used sampling records collected over a 29‐year period (1993–2021) to examine likely causes of fish assemblage change in the Cache la Poudre River, Colorado, USA. Numerous low‐head dams have reduced connectivity and altered flow, temperature, and habitat in the transition zone, a reach that historically supported rare and sensitive taxa valuable to regional biodiversity. We found diversity, distribution, and abundance of native species declined since the early 1990s, with formerly rare taxa extirpated and some common species becoming rare. Native taxa remained numerically dominant in warmer downstream reaches most affected by streamflow diversion but were incrementally reduced in richness and abundance upstream of low‐head dams without fishways. Concurrently, nonnative Brown Trout Salmo trutta increased in distribution and abundance, dominating upstream reaches that receive cooler and more stable flows, and expanding into downstream reaches where they were formerly absent, with likely negative consequences for native fishes. In the absence of mitigation, these collective effects, plus recent wildfire disturbance and future water development, will continue to degrade stream fish assemblages in our study area, and worldwide, where resource managers face the often‐competing interests of conserving native species, providing recreational fisheries, and meeting increasing water demands.

Funder

Colorado Water Conservation Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3