Affiliation:
1. DiSTAS—Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
Abstract
AbstractThis study examined the effects of spread formulation and the structural/lubricant properties of six different commercial hazelnut and cocoa spreads on sensory perception. Rheology, tribology, and quantitative descriptive analysis (QDA) was assessed by also evaluating the correlation coefficients between the quality descriptor and the rheological and textural parameters. The viscosity was evaluated at different temperatures to better simulate conditions before and after ingestion. Tribological analysis was executed at 37°C to mimic the human oral cavity. The effect of saliva presence and the number of runs on tribological behaviors was investigated. Moreover, textural, calorimetric, and particle size distribution measurements were performed to reinforce the correlation between structural/thermal parameters (e.g., firmness, stickiness, sugar melting point) and sensory aspects. “Visual viscosity,” defined as a sensory attribute evaluated prior to consumption, negatively correlated with apparent viscosity measured at 20°C and 10 s−1, whereas “body,” defined during oral processing and related to creaminess, positively correlated with apparent viscosity measured at 37°C and 50 s−1. These attributes were mainly influenced by particulate microstructure and solid volume fraction within the formulation. Textural stickiness positively correlated with sensory “adhesiveness” and was related to fat composition and milk powder addition, while “sweetness” was related to sucrose content and sugar melting enthalpy. Tribological data provided meaningful information related to particle‐derived attributes, as well as after‐coating perception (fattiness/oiliness), thus better predicting food evolution during oral consumption.