Next generation sequencing improves the resolution of detecting mixed host blood meal sources in field collected arboviral mosquito vectors

Author:

Tchouassi David P.1ORCID,Kisero Robinson O.1,Rotich Gilbert1,Dunlap Christopher2,Torto Baldwyn1,Muturi Ephantus J.2

Affiliation:

1. International Centre of Insect Physiology and Ecology Nairobi Kenya

2. USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit Peoria Illinois USA

Abstract

AbstractAccurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (Aedes aegypti, Aedes simpsoni s.l. and Culex pipiens s.l.) collected outdoors, and compared the frequency of single‐ versus multiple‐blood feeding. Single host blood meals were mostly recovered for Sanger‐based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%–22.7% of Ae. aegypti samples. Most single host blood meals for this mosquito species were from humans (47.7%–57.1%) and dogs (9.1%–19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%–28.9% of single host blood meals. The frequency of two or more host blood meals in Ae. simpsoni s.l. was 26.3%–45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%–47.4%) with representation of rodent, reptile and livestock blood meals (18.2%–68.2%). Single host blood meals from Cx. pipiens s.l. were mostly from humans (27.0%–39.4%) and cows (11.5%–27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%–24.4% of Cx. pipiens s.l. samples. Estimated human blood indices ranged from 53%–76% for Ae. aegypti, 32%–82% for Ae. simpsoni s.l. and 26%–61% for Cx. pipiens s.l. and were consistently lower for Sanger‐based sequencing approach compared to Miseq‐based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito‐borne pathogens.

Funder

Direktoratet for Utviklingssamarbeid

Styrelsen för Internationellt Utvecklingssamarbete

Australian Centre for International Agricultural Research

Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung

Government of the Republic of Kenya

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3