Economic and environmental assessment of automotive plastic waste end‐of‐life options: Energy recovery versus chemical recycling

Author:

Stallkamp Christoph1ORCID,Hennig Malte2ORCID,Volk Rebekka1ORCID,Richter Frank2,Bergfeldt Britta2,Tavakkol Salar2,Schultmann Frank1,Stapf Dieter2

Affiliation:

1. Karlsruhe Institute of Technology (KIT) Institute for Industrial Production (IIP) Karlsruhe Germany

2. Karlsruhe Institute of Technology (KIT) Institute for Technical Chemistry (ITC) Karlsruhe Germany

Abstract

AbstractMost automotive plastic waste (APW) is landfilled or used in energy recovery as it is unsuitable for high‐quality product mechanical recycling. Chemical recycling via pyrolysis offers a pathway toward closing the material loop by handling this heterogeneous waste and providing feedstock for producing virgin plastics. This study compares chemical recycling and energy recovery scenarios for APW regarding climate change impact and cumulative energy demand (CED), assessing potential environmental advantages. In addition, an economic assessment is conducted. In contrast to other studies, the assessments are based on pyrolysis experiments conducted with an actual waste fraction. Mass balances and product composition are reported. The experimental data is combined with literature data for up‐ and downstream processes for the assessment. Chemical recycling shows a lower net climate change impact (0.57 to 0.64 kg CO2e/kg waste input) and CED (3.38 to 4.41 MJ/kg waste input) than energy recovery (climate change impact: 1.17 to 1.25 kg CO2e/kg waste input; CED: 6.94 to 7.97 MJ/kg waste input), while energy recovery performs better economically (net processing cost of −0.05 to −0.02€/kg waste input) compared to chemical recycling (0.05 to 0.08€/kg waste input). However, chemical recycling keeps carbon in the material cycle contributing to a circular economy and reducing the dependence on fossil feedstocks. Therefore, an increasing circularity of APW through chemical recycling shows a conflict between economic and environmental objectives.

Publisher

Wiley

Subject

General Social Sciences,General Environmental Science

Reference58 articles.

1. Technical and environmental performances of alternative treatments for challenging plastics waste

2. Analysis of the effect of mechanical recycling upon tensile strength of a short glass fibre reinforced polyamide 6,6

3. Bewährte Verfahren zur kommunalen Abfallbewirtschaftung;Bilitewski B.;UBA Texte,2018

4. Brunner F.(2021). Hydrogen production gaseous petroleum refinery operation ‐ Europe without Switzerland ‐ hydrogen gaseous. Ecoinvent database version 3.7.https://v38.ecoquery.ecoinvent.org/Details/LCIA/732fc37d‐ef34‐4727‐92f3‐b943efdc5ba6/290c1f85‐4cc4‐4fa1‐b0c8‐2cb7f4276dce

5. Bundestag. (2020). Wasserstoff: Produktionskosten nach Typ bis 2050 [Hydrogen: production costs by type by 2050]. Statista.https://de.statista.com/statistik/daten/studie/1195863/umfrage/produktionskosten‐von‐wasserstoff‐nach‐wasserstofftyp‐in‐deutschland/

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3