Are future recycling benefits misleading? Prospective life cycle assessment of lithium‐ion batteries

Author:

Šimaitis Joris1ORCID,Allen Stephen1ORCID,Vagg Christopher2ORCID

Affiliation:

1. Department of Architecture & Civil Engineering University of Bath Bath UK

2. Department of Mechanical Engineering University of Bath Bath UK

Abstract

AbstractLife cycle assessment (LCA) quantifies the whole‐life environmental impacts of products and is essential for helping policymakers and manufacturers transition toward sustainable practices. However, typical LCA estimates future recycling benefits as if it happens today. For long‐lived products such as lithium‐ion batteries, this may be misleading since there is a considerable time gap between production and recycling. To explore this temporal mismatch problem, we apply future electricity scenarios from an integrated assessment model—IMAGE—using “premise” in Brightway2 to conduct a prospective LCA (pLCA) on the global warming potential of six battery chemistries and four recycling routes. We find that by 2050, electricity decarbonization under an RCP2.6 scenario mitigates production impacts by 57%, so to reach zero‐carbon batteries it is important to decarbonize upstream heat, fuels, and direct emissions. For the best battery recycling case, data for 2020 gives a net recycling benefit of −22 kg CO2e kWh−1 which reduces the net impact of production and recycling from 71 to 49 kg CO2e kWh−1. However, for recycling in 2040 with decarbonized electricity, net recycling benefits would be nearly 75% lower (−6 kg CO2e kWh−1), giving a net impact of 65 kg CO2e kWh−1. This is because materials recycled in the future substitute lower‐impact processes due to expected electricity decarbonization. Hence, more focus should be placed on mitigating production impacts today instead of relying on future recycling. These findings demonstrate the importance of pLCA in tackling problems such as temporal mismatch that are difficult to capture in typical LCA.

Publisher

Wiley

Subject

General Social Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3