Assessing potential hybridization between a hypothetical gene drive‐modified Drosophila suzukii and nontarget Drosophila species

Author:

Wolf Sarah12,Collatz Jana1,Enkerli Jürg3,Widmer Franco3,Romeis Jörg1

Affiliation:

1. Research Division Agroecology and Environment, Agroscope Zürich Switzerland

2. Institute for Plant Sciences University of Bern Bern Switzerland

3. Molecular Ecology, Agroscope Zürich Switzerland

Abstract

AbstractGenetically engineered gene drives (geGD) are potentially powerful tools for suppressing or even eradicating populations of pest insects. Before living geGD insects can be released into the environment, they must pass an environmental risk assessment to ensure that their release will not cause unacceptable harm to non‐targeted entities of the environment. A key research question concerns the likelihood that nontarget species will acquire the functional GD elements; such acquisition could lead to reduced abundance or loss of those species and to a disruption of the ecosystem services they provide. The main route for gene flow is through hybridization between the geGD insect strain and closely related species that co‐occur in the area of release and its expected dispersal. Using the invasive spotted‐wing drosophila, Drosophila suzukii, as a case study, we provide a generally applicable strategy on how a combination of interspecific hybridization experiments, behavioral observations, and molecular genetic analyses can be used to assess the potential for hybridization.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

Reference79 articles.

1. Genetics-based methods for agricultural insect pest management

2. Opinion: Standardizing the definition of gene drive

3. Bächli G.(2022).TaxoDros: The database on taxonomy of Drosophilidae. Eletronicdatabase.http://www.taxodros.uzh.ch/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent developments in agricultural biotechnology;Agricultural Biotechnology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3