An effector SsCVNH promotes the virulence of Sclerotinia sclerotiorum through targeting class III peroxidase AtPRX71

Author:

Ma Ming12,Tang Liguang3,Sun Rui12,Lyu Xueliang12,Xie Jiatao12,Fu Yanping2,Li Bo12ORCID,Chen Tao12ORCID,Lin Yang2ORCID,Yu Xiao12,Chen Weidong4,Jiang Daohong12,Cheng Jiasen12ORCID

Affiliation:

1. National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan Hubei China

2. The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China

3. Wuhan Vegetable Research Institute Wuhan Academy of Agricultural Science Wuhan Hubei China

4. United States Department of Agriculture, Agricultural Research Service Washington State University Pullman Washington USA

Abstract

AbstractMany plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP‐triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3