Machine learning for gap‐filling in greenhouse gas emissions databases

Author:

Cullen Luke1ORCID,Marinoni Andrea12,Cullen Jonathan1ORCID

Affiliation:

1. Department of Engineering University of Cambridge Cambridge UK

2. Department of Physics and Technology UiT the Arctic University of Norway Tromsø Norway

Abstract

AbstractGreenhouse gas (GHG) emissions datasets are often incomplete due to inconsistent reporting and poor transparency. Filling the gaps in these datasets allows for more accurate targeting of strategies aiming to accelerate the reduction of GHG emissions. This study evaluates the potential of machine learning methods to automate the completion of GHG datasets. We use three datasets of increasing complexity with 18 different gap‐filling methods and provide a guide to which methods are useful in which circumstances. If few dataset features are available, or the gap consists only of a missing time step in a record, then simple interpolation is often the most accurate method and complex models should be avoided. However, if more features are available and the gap involves non‐reporting emitters, then machine learning methods can be more accurate than simple extrapolation. Furthermore, the secondary output of feature importance from complex models allows for data collection prioritization to accelerate the improvement of datasets. Graph‐based methods are particularly scalable due to the ease of updating predictions given new data and incorporating multimodal data sources. This study can serve as a guide to the community upon which to base ever more integrated frameworks for automated detailed GHG emissions estimations, and implementation guidance is available at https://hackmd.io/@luke‐scot/ML‐for‐GHG‐database‐completion and https://doi.org/10.5281/zenodo.10463104. This article met the requirements for a gold‐gold JIE data openness badge described at http://jie.click/badges.

Funder

UK Research and Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3