Embed systemic equity throughout industrial ecology applications: How to address machine learning unfairness and bias

Author:

Bozeman Joe F.12ORCID,Hollauer Catharina1,Ramshankar Arjun Thangaraj1,Nakkasunchi Shalini3,Jambeck Jenna4,Hicks Andrea5ORCID,Bilec Melissa6ORCID,McCauley Darren7,Heidrich Oliver3

Affiliation:

1. Civil & Environmental Engineering Georgia Institute of Technology Atlanta Georgia USA

2. Public Policy Georgia Institute of Technology Atlanta Georgia USA

3. Engineering, Tyndall Centre for Climate Change Newcastle University Newcastle upon Tyne UK

4. Environmental Engineering, New Materials Institute University of Georgia Athens Georgia USA

5. Civil & Environmental Engineering University of Wisconsin‐Madison Madison Wisconsin USA

6. Civil & Environmental Engineering University of Pittsburg Pittsburg Pennsylvania USA

7. Newcastle Law School Newcastle University Newcastle upon Tyne UK

Abstract

AbstractRecent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision‐makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain‐specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3