The Bursaphelenchus xylophilus candidate effector BxLip‐3 targets the class I chitinases to suppress immunity in pine

Author:

Qiu Yi‐Jun12ORCID,Wu Xiao‐Qin12,Wen Tong‐Yue12,Hu Long‐Jiao123ORCID,Rui Lin12,Zhang Yan12,Ye Jian‐Ren12ORCID

Affiliation:

1. Co‐Innovation Center for Sustainable Forestry in Southern China, College of Forestry Nanjing Forestry University Nanjing China

2. Jiangsu Key Laboratory for Prevention and Management of Invasive Species Nanjing Forestry University Nanjing China

3. Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing China

Abstract

AbstractLipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant‐parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip‐3. It was transcriptionally up‐regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip‐3 suppressed cell death triggered by the pathogen‐associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase‐3 domain is essential for immunosuppression. Silencing of the BxLip‐3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis‐related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two‐hybrid and co‐immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1‐3 and PtChia1‐4, as targets of BxLip‐3. The expression of these two chitinases was up‐regulated during B. xylophilus inoculation and inhibited by BxLip‐3. Overall, this study illustrated that BxLip‐3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.

Funder

National Basic Research Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3