Affiliation:
1. Department of Computer Science and Engineering NIT Hamirpur Hamirpur Himachal Pradesh India
2. Department of Computer Science and Engineering Central University of Rajasthan Ajmer Rajasthan India
Abstract
AbstractAutomatic lung segmentation in the chest x‐ray is important for computer aided diagnosis. It helps in the surgical planning and diagnosis of pulmonary diseases. Lung shape, size, overlapped area, and opacities make lung segmentation arduous. In this article, we have proposed a UNet‐based model for lung segmentation. We have evaluated the model on difficult datasets that have chest radiographs of patients affected by tuberculosis and other severe abnormalities. Three chest radiography datasets and a CT‐scan dataset are used to prove the model generalization. The proposed model efficiently uses the residual learning and attention mechanisms to improve the segmentation results against the original UNet for the dice coefficient index (DCI) and Jaccard index. We have also performed an ablation study to highlight the impact of the attention mechanism in the proposed model. The model obtained a 97.62% DCI, 95.43% Jaccard index, and a 4.00 Hausdorff distance on the Montgomery County dataset. While on the Shenzhen and NIH datasets, it achieved a 95.71% and 95.75% DCI, 91.90% and 91.95% Jaccard index, and a 5.23 and 5.20 Hausdorff distance, respectively. The proposed model has achieved better or comparable performance against other state‐of‐the‐art models.
Subject
Artificial Intelligence,Computational Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献