Online short text clustering using infinite extensions of discrete mixture models

Author:

Hannachi Samar1,Najar Fatma1,Ennajari Hafsa1,Bouguila Nizar1

Affiliation:

1. Concordia Institute for Information and Systems Engineering (CIISE) Concordia University Montreal Quebec Canada

Abstract

AbstractShort text clustering is one of the fundamental tasks in natural language processing. Different from traditional documents, short texts are ambiguous and sparse due to their short form and the lack of recurrence in word usage from one text to another, making it very challenging to apply conventional machine learning algorithms directly. In this article, we propose two novel approaches for short texts clustering: collapsed Gibbs sampling infinite generalized Dirichlet multinomial mixture model infinite GSGDMM) and collapsed Gibbs sampling infinite Beta‐Liouville multinomial mixture model (infinite GSBLMM). We adopt two flexible and practical priors to the multinomial distribution where in the first one the generalized Dirichlet distribution is integrated, while the second one is based on the Beta‐Liouville distribution. We evaluate the proposed approaches on two famous benchmark datasets, namely, Google News and Tweet. The experimental results demonstrate the effectiveness of our models compared to basic approaches that use Dirichlet priors. We further propose to improve the performance of our methods with an online clustering procedure. We also evaluate the performance of our methods for the outlier detection task, in which we achieve accurate results.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Artificial Intelligence,Computational Mathematics

Reference33 articles.

1. Short text clustering; challenges & solutions: a literature review;Siddiqui T;Int J Math Comput Res,2015

2. Exact fisher information of generalized Dirichlet multinomial distribution for count data modeling

3. Spatial Color Image Databases Summarization

4. A Model-Based Approach for Discrete Data Clustering and Feature Weighting Using MAP and Stochastic Complexity

5. On smoothing and scaling language model for sentiment based information retrieval;Najar F;Adv Data Anal Classif,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3