Distributed system anomaly detection using deep learning‐based log analysis

Author:

Han Pengfei1,Li Huakang2,Xue Gang1,Zhang Chao1

Affiliation:

1. School of Software Yunnan University Kunming Yunnan China

2. School of Artificial Intelligence and Advanced Computing Xi'an Jiaotong‐Liverpool University Suzhou Jiangsu China

Abstract

AbstractAnomaly detection is a key step in ensuring the security and reliability of large‐scale distributed systems. Analyzing system logs through artificial intelligence methods can quickly detect anomalies and thus help maintenance personnel to maintain system security. Most of the current works only focus on the temporal or spatial features of distributed system logs, and they cannot sufficiently extract the global features of distributed system logs to achieve a good correct rate of anomaly detection. To further address the shortcomings of existing methods, this paper proposes a deep learning model with global spatiotemporal features to detect the presence of anomalies in distributed system logs. First, we extract semi‐structured log events from log templates and model them as natural language. In addition, we focus on the temporal characteristics of logs using the bidirectional long short‐term memory network and the spatial invocation characteristics of logs using the Transformer. Extensive experimental evaluations show the advantages of our proposed model for distributed system log anomaly detection tasks. The optimal F1‐Score on three open‐source datasets and our own collected distributed system datasets reach 98.04%, 94.34%, 88.16%, and 97.40%, respectively.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Mathematics

Reference41 articles.

1. A real‐time detection method for abnormal data of internet of things sensors based on Mobile edge computing;Xuguang L;Math Probl Eng,2021

2. TaoL FengL ShengM WeiP.An integrated framework on mining logs files for computing system management. Paper presented at: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining;2005:776‐781.

3. Survey of state‐of‐the‐art log‐based failure diagnosis;Jia T;J Softw,2020

4. A survey on signature generation methods for network traffic classification;George V;Int J Adv Res Comput Sci,2013

5. AgrawalA KarlupiaR GuptaR.Logan: a distributed online log parser. Paper presented at: 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE;2019:1946‐1951.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3