Architectural anatomy of the human tibialis anterior presents morphological asymmetries between superficial and deep unipennate regions

Author:

Martin‐Rodriguez Saúl12ORCID,Gonzalez‐Henriquez Juan Jose23ORCID,Galvan‐Alvarez Victor12ORCID,Cruz‐Ramírez Sara1,Calbet José A.124ORCID,Sanchis‐Moysi Joaquín12ORCID

Affiliation:

1. Department of Physical Education University of Las Palmas de Gran Canaria Las Palmas de Gran Canaria Spain

2. Research Institute of Biomedical and Health Sciences (IUIBS) Las Palmas de Gran Canaria Spain

3. Department of Mathematics University of Las Palmas de Gran Canaria Las Palmas de Gran Canaria Spain

4. Department of Physical Performance The Norwegian School of Sport Sciences Oslo Norway

Abstract

AbstractThe tibialis anterior muscle plays a critical role in human ambulation and contributes to maintaining the upright posture. However, little is known about its muscle architecture in males and females. One hundred and nine physically active males and females were recruited. Tibialis anterior muscle thickness, pennation angle, and fascicle length were measured at rest in both unipennate regions of both legs using real‐time ultrasound imaging. A linear mixed model was used with muscle thickness, pennation angle, or fascicle length as the dependent variables. All models were carried out with and without total leg lean mass and shank length as covariates. Causal mediation analysis was computed to explore the effect of muscle thickness on the relationship between fascicle length and pennation angle. There were no significant differences between dominant and nondominant legs regarding muscle architecture. Muscle thickness and pennation angle were greater in the deep than the superficial unipennate region in males (1.9 mm and 1.1°, p < 0.001) and women (3.4 mm and 2.2°, p < 0.001). However, the fascicle length was similar in both regions for both sexes. The differences remained significant after accounting for differences in leg lean mass and shank length. In both regions, muscle thickness was 1–3 mm greater in males and superficial pennation angle 2° smaller in females (both, p < 0.001). After accounting for leg lean mass and shank length, sex differences remained for muscle thickness (1.6 mm, p < 0.05) and pennation angle (3.4°, p < 0.001) but only in the superficial region. In both regions, leg lean mass and shank‐adjusted fascicle length were 1.4 mm longer in females than males (p < 0.05). The causal mediation analysis revealed that the estimation of fascicle length was positive, suggesting that a 10% increase in muscle thickness would augment the fascicle length, allowing a 0.38° pennation angle decrease. Moreover, the pennation angle increases in total by 0.54° due to the suppressive effect of the increase in fascicle length. The estimated mediation, direct, and total effects were all significantly different from zero (p < 0.001). Overall, our results indicate that the architectural anatomy of the tibialis anterior shows sexual dimorphism in humans. Tibialis anterior presents morphological asymmetries between superficial and deep unipennate regions in both sexes. Lastly, our causal mediation model identified a suppressive effect of fascicle length on the pennation angle, suggesting that increments in muscle thickness are not always aligned with increments in fascicle length or the pennation angle.

Funder

Ministerio de Economía y Competitividad

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3