Regulatory T cell frequencies are increased in preterm infants with clinical early-onset sepsis

Author:

Pagel J12,Hartz A13,Figge J3,Gille C4,Eschweiler S3,Petersen K1,Schreiter L13,Hammer J1,Karsten C M3,Friedrich D2,Herting E1,Göpel W1,Rupp J2,Härtel C1

Affiliation:

1. Department of Pediatrics, University Clinic Schleswig Holstein, Campus Lübeck, Germany

2. Department of Infectious Diseases and Microbiology, University of Lübeck, Germany

3. Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany

4. Department of Neonatology, University of Tübingen, Tübingen, Germany

Abstract

Summary The predisposition of preterm neonates to invasive infection is, as yet, incompletely understood. Regulatory T cells (Tregs) are potential candidates for the ontogenetic control of immune activation and tissue damage in preterm infants. It was the aim of our study to characterize lymphocyte subsets and in particular CD4+CD25+forkhead box protein 3 (FoxP3)+ Tregs in peripheral blood of well-phenotyped preterm infants (n = 117; 23 + 0 – 36 + 6 weeks of gestational age) in the first 3 days of life in comparison to term infants and adults. We demonstrated a negative correlation of Treg frequencies and gestational age. Tregs were increased in blood samples of preterm infants compared to term infants and adults. Notably, we found an increased Treg frequency in preterm infants with clinical early-onset sepsis while cause of preterm delivery, e.g. chorioamnionitis, did not affect Treg frequencies. Our data suggest that Tregs apparently play an important role in maintaining maternal-fetal tolerance, which turns into an increased sepsis risk after preterm delivery. Functional analyses are needed in order to elucidate whether Tregs have potential as future target for diagnostics and therapeutics.

Funder

German Centre of Infection Research

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3