The pharmacokinetics and dosing of oral 4-methylumbelliferone for inhibition of hyaluronan synthesis in mice

Author:

Kuipers H F1ORCID,Nagy N1,Ruppert S M1,Sunkari V G1,Marshall P L1,Gebe J A2,Ishak H D1,Keswani S G3,Bollyky J1,Frymoyer A R1,Wight T N2,Steinman L1,Bollyky P L1

Affiliation:

1. Stanford University, Stanford, CA, USA

2. Benaroya Research Institute, Seattle, WA, USA

3. Baylor College of Medicine, Houston, TX, USA

Abstract

Summary Recently, there has been considerable interest in using 4-methylumbelliferone (4-MU) to inhibit hyaluronan (HA) synthesis in mouse models of cancer, autoimmunity and a variety of other inflammatory disorders where HA has been implicated in disease pathogenesis. In order to facilitate future studies in this area, we have examined the dosing, treatment route, treatment duration and metabolism of 4-MU in both C57BL/6 and BALB/c mice. Mice fed chow containing 5% 4-MU, a dose calculated to deliver 250 mg/mouse/day, initially lose substantial weight but typically resume normal weight gain after 1 week. It also takes up to a week to see a reduction in serum HA in these animals, indicating that at least a 1-week loading period on the drug is required for most protocols. At steady state, more than 90% of the drug is present in plasma as the glucuronidated metabolite 4-methylumbelliferyl glucuronide (4-MUG), with the sulphated metabolite, 4-methylumbelliferyl sulphate (4-MUS) comprising most of the remainder. Chow containing 5% but not 0·65% 4-MU was effective at preventing disease in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, as well as in the DORmO mouse model of autoimmune diabetes. While oral 4-MU was effective at preventing EAE, daily intraperitoneal injections of 4-MU were not. Factors potentially affecting 4-MU uptake and plasma concentrations in mice include its taste, short half-life and low bioavailability. These studies provide a practical resource for implementing oral 4-MU treatment protocols in mice.

Funder

Human Frontier Science Program

California Institute of Regenerative Medicine

German Research Foundation grant

Juvenile Diabetes Research Foundation

NIH

Stanford University Child Health Research Institute

SPARK Program

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3