Quantifying the Capacity for Assisted Migration to Achieve Conservation and Forestry Goals Under Climate Change

Author:

Zou Yibiao12ORCID,Backus Gregory A.13,Safford Hugh D.14,Sawyer Sarah5,Baskett Marissa L.1

Affiliation:

1. Department of Environmental Science and Policy University of California Davis California USA

2. Department of Environmental Systems Science ETH Zürich Zürich Switzerland

3. Department of Evolution, Ecology and Organismal Biology University of California Riverside California USA

4. Vibrant Planet Incline Village Nevada USA

5. USDA Forest Service, Washington Office Vallejo California USA

Abstract

ABSTRACTAimMany tree species may be threatened with declines in range and biomass, or even extinction, if they cannot disperse or adapt quickly enough to keep pace with climate change. One potential, and potentially risky, strategy to mitigate this threat is assisted migration (AM), the intentional movement of species to facilitate population range shifts to more climatically suitable locations under climate change. The ability for AM to minimise risk and maximise conservation and forestry outcomes depends on a multi‐faceted decision process for determining, what, where and how much to move. We provide an assessment on how the benefits and risks of AM could affect the decision‐making process.LocationMountainous coastal western United States.TaxonTrees.MethodsWe used a dynamic vegetation model parameterised with 23 tree species.ResultsWe found that most of the modelled species are likely to experience a substantial decline in biomass, with many potentially facing regional extinction by 2100 under the high‐emission SSP5‐85 climate‐change scenario. Though simulations show AM had little effect on the forestry goal of total biomass across all species, its effects on the conservation goal of promoting individual species' persistence were far more substantial. Among eight AM strategies (differing in the life cycle stage of movement and target destination selection criteria), the approach that conserved the highest biomass for individual species involved relocating target seedlings to areas that recently experienced fire. Although this strategy significantly reduced extinction risk for six at‐risk species compared with no action, it also slightly reduced biomass of four species, due to increasing competition. Species with relatively weak tolerance to drought, fire or high temperature were the most likely candidate groups for AM.Main ConclusionsOur simulations indicate that AM can aid conservation by reducing extinction risks for species vulnerable to climate change, but it has limited impact on forestry‐specific goals, affecting overall biomass minimally. This model framework could be applied to other forest ecosystems to evaluate the efficacy of AM globally.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3