Structural bases for stoichiometry‐selective calcium potentiation of a neuronal nicotinic receptor

Author:

Mazzaferro Simone123ORCID,Kang Guipeun4ORCID,Natarajan Kathiresan1ORCID,Hibbs Ryan E.45ORCID,Sine Steven M.167ORCID

Affiliation:

1. Department of Physiology and Biomedical Engineering Mayo Clinic Rochester Minnesota USA

2. Wellcome Trust ‐ Medical Research Council Institute of Metabolic Science University of Cambridge Cambridge UK

3. Wellcome Trust ‐ Medical Research Council Cambridge Stem Cell Institute University of Cambridge Cambridge UK

4. Department of Neuroscience University of Texas Southwestern Medical Center Dallas Texas USA

5. Department of Neurobiology University of California San Diego La Jolla California USA

6. Department of Molecular Pharmacology and Experimental Therapeutics Mayo Clinic Rochester Minnesota USA

7. Department of Neurology Mayo Clinic College of Medicine and Science Rochester Minnesota USA

Abstract

Background and Purposeα4β2 nicotinic acetylcholine (nACh) receptors assemble in two stoichiometric forms, one of which is potentiated by calcium. The sites of calcium binding that underpin potentiation are not known.Experimental ApproachTo identify calcium binding sites, we applied cryo‐electron microscopy (cryo‐EM) and molecular dynamics (MD) simulations to each stoichiometric form of the α4β2 nACh receptor in the presence of calcium ions. To test whether the identified calcium sites are linked to potentiation, we generated mutants of anionic residues at the sites, expressed wild type and mutant receptors in clonal mammalian fibroblasts, and recorded ACh‐elicited single‐channel currents with or without calcium.Key ResultsBoth cryo‐EM and MD simulations show calcium bound to a site between the extracellular and transmembrane domains of each α4 subunit (ECD‐TMD site). Substituting alanine for anionic residues at the ECD‐TMD site abolishes stoichiometry‐selective calcium potentiation, as monitored by single‐channel patch clamp electrophysiology. Additionally, MD simulation reveals calcium association at subunit interfaces within the extracellular domain. Substituting alanine for anionic residues at the ECD sites reduces or abolishes stoichiometry‐selective calcium potentiation.Conclusions and ImplicationsStoichiometry‐selective calcium potentiation of the α4β2 nACh receptor is achieved by calcium association with topographically distinct sites framed by anionic residues within the α4 subunit and between the α4 and β2 subunits. Stoichiometry‐selective calcium potentiation could result from the greater number of calcium sites in the stoichiometric form with three rather than two α4 subunits. The results are relevant to modulation of signalling via α4β2 nACh receptors in physiological and pathophysiological conditions.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3