Human umbilical cord mesenchymal stem cell‐derived exosomes combined with gelatin methacryloyl hydrogel to promote fractional laser injury wound healing

Author:

Zhang Xinling1,Ding Pengbing1,Chen Yujie1,Lin Zhiyu1,Zhao Xun1,Xie Hongbin1ORCID

Affiliation:

1. Department of Plastic Surgery Peking University Third Hospital Beijing China

Abstract

AbstractTo investigate whether human umbilical cord mesenchymal stem cell‐derived exosomes combined with gelatin methacryloyl (GelMA) hydrogel are beneficial in promoting healing of laser‐injured skin wounds in mice. Supernatants of cultured human umbilical cord mesenchymal stem cells (HUC‐MSCs) were collected to obtain human umbilical cord MSC‐derived exosomes (HUC‐MSCs‐Exos), which were combined with GelMA hydrogel complex to treat a mouse fractional laser injury model. The study was divided into PBS group, EX (HUC‐MSCs‐Exos) group, GEL (GelMA hydrogel) group and EX+GEL (HUC‐MSCs‐Exos combined with GelMA hydrogel) group. The healing of laser‐injured skin in each group was observed by gross view and dermatoscopy, and changes in skin structure, angiogenesis and proliferation‐related indexes were observed during the healing process of laser‐injured skin in each group. The results of the animal experiments showed that the EX and GEL groups alone and the EL+EX group exhibited less inflammatory response compared to the PBS group. The EX and GEL groups showed marked tissue proliferation and favourable angiogenesis, which promoted the wound healing well. The GEL+EX group had the most significant promotion of wound healing compared to the PBS group. qPCR results showed that the expression levels of proliferation‐related factors, including KI67 and VEGF and angiogenesis‐related factor CD31, were significantly higher in the GEL+EX group than in the other groups, with a time‐dependent effect. The combination of HUC‐MSCs‐Exos and GelMA hydrogel is beneficial in reducing the early inflammatory response of laser‐injured skin in mice and promoting its proliferation and angiogenesis, which in turn promotes wound healing.

Publisher

Wiley

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3