Effects of elevated CO2 and temperature on the performance of a diet specialized neotropical herbivore and its host plant

Author:

Vencl Fredric V.12ORCID,Bartram Stefan3,Winter Klaus4,Boland Wilhelm3,Srygley Robert B.45

Affiliation:

1. Ecology and Evolution Stony Brook University Stony Brook New York USA

2. National Museum of Natural History Smithsonian Institution Washington DC USA

3. Max‐Planck‐Institut für Chemische Ökologie Jena Germany

4. The Smithsonian Tropical Research Institute Balboa Ancón Republic of Panama

5. USDA‐Agricultural Research Service Northern Plains Agricultural Research Lab Sidney Montana USA

Abstract

AbstractLittle is known about the potential responses of ecologically specialized tropical species to atmospheric change and global warming. In 2 years of greenhouse experiments simulating climate change impacts, we quantified the effects of mean ambient temperature, elevated temperature (Te), current ambient CO2 concentration ([CO2]a), and doubled CO2 concentration ([CO2]e) on biomass, growth rate, and foliar chemistry of the morning glory vine, Camonea umbellata. In addition, we measured the impacts of climate change simulations on the performance and survival of the tortoise beetle, Acromis sparsa, which feeds exclusively on C. umbellata. Full‐sib A. sparsa larval broods were divided into cohorts. Each cohort was placed in one of four temperature‐CO2 controlled chambers and fed leaves grown in their respective treatments. Vines growing in [CO2]e more than doubled their biomass and their leaves expanded faster. The [CO2]a and Te treatments interacted to yield the greatest foliar [C]. Vines in [CO2]e and Te had the greatest C:N ratios, the lowest availability of nitrogen, and highest larval mortality. Whereas pupae were smaller and suffered lower survival in Te, pupal mass and survival increased in both the [CO2]e and Te treatments. Overall, the simultaneous elevation of both [CO2] and temperature caused declines in host quality, larval survivorship, and pupal mortality that were not observed when only one climate factor was altered. Based on this first tropical experimental study, we predict that C. umbellata will benefit from elevation of temperature and atmospheric [CO2] by altering its foliar chemistry to the detriment of its diet‐specialized herbivore enemy.Abstract in Spanish is available with online material.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3