Influence of temperature on rheological properties during early‐stage geopolymerization

Author:

Brandvold Allison S.1,Kriven Waltraud M.1ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois

Abstract

AbstractMetakaolin geopolymers have gained much interest as a large‐scale, 3D printable material. It is well known that increasing temperature can expedite the geopolymerization reaction, but little is known about how the temperature variability of the printing environment can influence the rheology of fresh geopolymer pastes. In this study, the influence of temperature on the viscosity of potassium geopolymer pastes was investigated under constant shearing at rates of 25, 50, or 100 s−1, yield stress measurements, and oscillatory motion. The temperature range examined was 5°C–55°C, in systematic 5°C increments. It was found that temperatures above 30°C resulted in lower starting viscosities compared to colder temperatures, but eventually exhibited an exponential increase in viscosity as the geopolymerization chemical reaction became dominate. In addition, a higher shear rate delayed, but did not stop, the exponential increase in viscosity from occurring. Yield stress values also reflected an upward trend with increasing temperatures after a 30‐min temperature soak. Lastly, oscillatory measurements indicated that viable printing times for 50°C or above were as little as 50–60 min total and were compared to Vicat needle testing. Overall, the influence of temperature on rheological properties could be used to manipulate the geopolymer viscosity for optimum printing conditions.

Funder

Construction Engineering Research Laboratory

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3