Affiliation:
1. Department of Metallurgical and Materials Engineering Polytechnic School – University of São Paulo São Paulo Brazil
2. Brazilian Nanotechnology National Laboratory (LNNano) Rua Giuseppe Maximo Scolfaro Campinas São Paulo Brazil
3. Laboratory of Carbon and Ceramic Materials, Department of Physics Federal University of Espírito Santo (UFES) Vitória Espírito Santo Brazil
4. Department of Materials Science and Engineering Lehigh University Bethlehem Pennsylvania USA
Abstract
AbstractInterface segregation plays a governing role in nanocrystalline ceramics properties due to the relative increase in the interfacial volume fraction. However, due to the complexity of the detection and quantification of interfacial excesses at the nanoscale, the role of ionic dopants or additives on microstructural evolution and thermodynamics can be easily underestimated. In this work, we address the spatial distribution of Li+ as a dopant in magnesium aluminate spinel nanoparticles. This is achieved through a novel method for the detection and quantification of Li+ across the surface, grain boundary, and bulk (crystal lattice). Based on selective lixiviation combined with chemical analysis, we were able to quantify the amount of Li+ forming surface excess, whereas the quantitative solid‐state nuclear magnetic resonance technique enabled the quantification of Li+ segregated in the grain boundaries and dissolved in the lattice. This comprehensive understanding of the Li+ distribution across the nanoparticles makes possible an unprecedented interpretation of coarsening and sintering, with a clear correlation between the microstructure and the Li+ distribution. Although the work focuses on MgAl2O4, the proposed combination of techniques is expected to have a positive impact on the understanding of other multicomponent nanoscale systems.
Funder
Fundação de Amparo à Pesquisa e Inovação do Espírito Santo
Subject
Materials Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献