Facilitated reversible domain switching at multiphase boundary in periodically orthogonal poled KNN‐based ceramics: Strain versus non‐180o domain

Author:

Wu Bo12ORCID,Tao Hong12ORCID,Ma Jian12,Zhao Lin2,Ergu Daji2,Luo Li3,Wu Wenjuan3ORCID,Yao Yali4

Affiliation:

1. Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station Southwest Minzu University Chengdu China

2. Sichuan Province Key Laboratory of Information Materials Southwest Minzu University Chengdu China

3. Sichuan Province Key Laboratory of Information Materials and Devices Application Chengdu University of Information Technology Chengdu China

4. School of Physics and Engineering Technology Chengdu Normal University Chengdu China

Abstract

AbstractAlthough many approaches have been implemented to tailor the strain in potassium sodium niobate (KNN)‐based ferroelectrics, they still suffer from poor strain compared to shape memory alloys and giant magnetostrictive materials. Herein, a strategy of periodic orthogonal poling is implemented in KNN‐based ceramics with multiphase boundaries, and the correlation between the amount of non‐180° domain and strain is established, revealing that the mechanisms of interfacial stresses facilitate reversible domain switching during the periodic orthogonal poling. Owing to the self‐generated interfacial stresses between the adjacent regions with different poling directions, an enhanced strain benefits from non‐180° domain switching, which is reversible during periodic orthogonal poling. The enhancement in strain decreases from O‐T to R‐O‐T to the R‐T phase boundary, which corresponds to the different quantity of the non‐180° domain, indicating that a large amount of non‐180° domains can further boost high strain under periodic orthogonal poling. Notably, a slight frequency‐dependent strain was observed across the frequency range of 1‒50 Hz. Therefore, an ideal strain can be further induced by enhancing the amount of reversible non‐180° domain switching in the multiphase boundary during periodic orthogonal poling, which can serve as a guide for the design of high‐performance KNN materials.

Funder

Southwest Minzu University

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3