Overexpression of a C3HC4‐type E3‐ubiquitin ligase contributes to salinity tolerance by modulating Na+ homeostasis in rice

Author:

Kim Jong Ho1,Lim Sung Don2,Jung Ki‐Hong3ORCID,Jang Cheol Seong1ORCID

Affiliation:

1. Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture Kangwon National University Chuncheon Republic of Korea

2. Molecular Plant Physiology Laboratory, Department of Plant Life & Resource Sciences Sangji University Wonju Republic of Korea

3. Graduate School of Biotechnology Kyung Hee University Yongin Republic of Korea

Abstract

AbstractSoil salinity has a negative effect on crop yield. Therefore, plants have evolved many strategies to overcome decreases in yield under saline conditions. Among these, E3‐ubiquitin ligase regulates salt tolerance. We characterized Oryza sativa Really Interesting New Gene (RING) Finger C3HC4‐type E3 ligase (OsRFPHC‐4), which plays a positive role in improving salt tolerance. The expression of OsRFPHC‐4 was downregulated by high NaCl concentrations and induced by abscisic acid (ABA) treatment. GFP‐fused OsRFPHC‐4 was localized to the plasma membrane of rice protoplasts. OsRFPHC‐4 encodes a cellular protein with a C3HC4‐RING domain with E3 ligase activity. However, its variant OsRFPHC‐4C161A does not possess this activity. OsRFPHC‐4‐overexpressing plants showed enhanced salt tolerance due to low accumulation of Na+ in both roots and leaves, low Na+ transport in the xylem sap, high accumulation of proline and soluble sugars, high activity of reactive oxygen species (ROS) scavenging enzymes, and differential regulation of Na+/K+ transporter expression compared to wild‐type (WT) and osrfphc‐4 plants. In addition, OsRFPHC‐4‐overexpressing plants showed higher ABA sensitivity under exogenous ABA treatment than WT and osrfphc‐4 plants. Overall, these results suggest that OsRFPHC‐4 contributes to the improvement of salt tolerance and Na+/K+ homeostasis via the regulation of changes in Na+/K+ transporters.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3