Catalytic selectivity and evolution of cytochrome P450 enzymes involved in monoterpene indole alkaloids biosynthesis

Author:

Liu Zhan12,Pang Jing12,Li Yi12,Wei Daijing12,Yang Jing12,Wang Xuefei12,Luo Yinggang1ORCID

Affiliation:

1. Center for Natural Products Research, Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China

2. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractCytochrome P450 enzyme (CYP)‐catalyzed functional group transformations are pivotal in the biosynthesis of metabolic intermediates and products, as exemplified by the CYP‐catalyzed C7‐hydroxylation and the subsequent C7‐C8 bond cleavage reaction responsible for the biosynthesis of the well‐known antitumor monoterpene indole alkaloid (MIA) camptothecin. To determine the key amino acid residues responsible for the catalytic selectivity of the CYPs involved in MIA biosynthesis, we characterized the enzymes CYP72A728 and CYP72A729 as stereoselective 7‐deoxyloganic acid 7‐hydroxylases (7DLHs). We then conducted a comparative analysis of the amino acid sequences and the predicted structures of the CYP72A homologs involved in camptothecin biosynthesis, as well as those of the CYP72A homologs implicated in the pharmaceutically significant MIAs biosynthesis in Catharanthus roseus. The crucial amino acid residues for the catalytic selectivity of the CYP72A‐catalyzed reactions were identified through fragmental and individual residue replacement, catalytic activity assays, molecular docking, and molecular dynamic simulations analysis. The fragments 1 and 3 of CYP72A565 were crucial for its C7‐hydroxylation and C7‐C8 bond cleavage activities. Mutating fragments 1 and 2 of CYP72A565 transformed the bifunctional CYP72A565 into a monofunctional 7DLH. Evolutionary analysis of the CYP72A homologs suggested that the bifunctional CYP72A in MIA‐producing plants may have evolved into a monofunctional CYP72A. The gene pairs CYP72A728‐CYP72A610 and CYP72A729‐CYP72A565 may have originated from a whole genome duplication event. This study provides a molecular basis for the CYP72A‐catalyzed hydroxylation and C‐C bond cleavage activities of CYP72A565, as well as evolutionary insights of CYP72A homologs involved in MIAs biosynthesis.

Funder

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3