Phylogenetic diversity is a weak proxy for functional diversity but they are complementary in explaining community assembly patterns in temperate vegetation

Author:

E‐Vojtkó Anna12ORCID,de Bello Francesco13ORCID,Lososová Zdeňka4ORCID,Götzenberger Lars12ORCID

Affiliation:

1. Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic

2. Institute of Botany Czech Academy of Sciences Třeboň Czech Republic

3. CIDE‐CSIC Valencia Spain

4. Department of Botany and Zoology, Faculty of Science Masaryk University Brno Czech Republic

Abstract

AbstractEcological differences between coexisting species within plant communities can be assessed by considering functional and phylogenetic dissimilarities either separately or in a complementary way. Here, we studied (a) the potential overlap between functional (FD) and phylogenetic diversities (PD) and (b) their combined and unique roles in explaining community assembly patterns across different temperate vegetation types and across functional traits representing multiple dimensions of plant strategy (plant size, leaf, floral and reproductive, clonal and bud bank traits).We tested the strength of the PD–FD relationship within and across vegetation types and functional traits (Pearson correlations) and tested whether it depended on the strength of the phylogenetic signal (Pagel's lambda and Blomberg'sK). We tested deviations from random expectations in FD and ‘decoupled FD’ (i.e. functional dissimilarity after accounting for the effect of phylogenetic distances between species) to reveal the importance of ecological differences for community assembly.PD–FD correlations were predominantly significant but rarely strong, and largely depended on the studied functional trait and vegetation type. Phylogenetic signals were partially but inconsistently related to the overlap between FD and PD.Community assembly patterns tended to shift from under‐dispersion (FD lower than random expectations) towards over‐dispersion (FD higher than random expectations) when functional distances were decoupled from phylogenetic distances indicating that species within the same clade were dissimilar to each other regarding their traits. However, we found the opposite pattern as well, mainly for floral and below‐ground traits, which indicated functional differentiation across clades.Synthesis. Decoupling functional and phylogenetic differences between species might provide further information on plant community assembly: showing cases where the strongest ecological differentiation between coexisting species occurs between phylogenetically related species rather than between phylogenetically unrelated ones.

Funder

Akademie Věd České Republiky

Grantová Agentura České Republiky

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3