Divergent community trajectories with climate change across a fine‐scale gradient in snow depth

Author:

Oldfather Meagan F.12ORCID,Elmendorf Sarah C.23ORCID,Van Cleemput Elisa23ORCID,Henn Jonathan J.34ORCID,Huxley Jared D.4ORCID,White Caitlin T.23ORCID,Humphries Hope C.3,Spasojevic Marko J.4ORCID,Suding Katharine N.23ORCID,Emery Nancy C.2ORCID

Affiliation:

1. U.S. Geological Survey North Central Climate Adaptation Science Center Boulder Colorado USA

2. Department of Ecology and Evolutionary Biology University of Colorado Boulder Boulder Colorado USA

3. Institute of Arctic and Alpine Research University of Colorado Boulder Boulder Colorado USA

4. Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California USA

Abstract

Abstract Fine‐scale microclimate variation due to complex topography can shape both current vegetation distributional patterns and how vegetation responds to changing climate. Topographic heterogeneity in mountains is hypothesized to mediate responses to regional climate change at the scale of metres. For alpine vegetation especially, the interplay between changing temperatures and topographically mediated variation in snow accumulation will determine the overall impact of climate change on vegetation dynamics. We combined 30 years of co‐located measurements of temperature, snow and alpine plant community composition in Colorado, USA, to investigate vegetation community trajectories across a snow depth gradient. Our analysis of long‐term trends in plant community composition revealed notable directional change in the alpine vegetation with warming temperatures. Furthermore, community trajectories are divergent across the snow depth gradient, with exposed parts of the landscape that experience little snow accumulation shifting towards stress‐tolerant, cold‐ and drought‐adapted communities, while snowier areas shifted towards more warm‐adapted communities. Synthesis: Our findings demonstrate that fine‐scale topography can mediate both the magnitude and direction of vegetation responses to climate change. We documented notable shifts in plant community composition over a 30‐year period even though alpine vegetation is known for slow dynamics that often lag behind environmental change. These results suggest that the processes driving alpine plant population and community dynamics at this site are strong and highly heterogeneous across the complex topography that is characteristic of high‐elevation mountain systems.

Funder

National Science Foundation

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3