Chance and necessity in the assembly of plant communities: Stochasticity increases with size, isolation and diversity of temporary ponds

Author:

Arim Matías1ORCID,Pinelli Verónica1ORCID,Rodríguez‐Tricot Lucía1ORCID,Ortiz Esteban1ORCID,Illarze Mariana1ORCID,Fagúndez‐Pachón César1ORCID,Borthagaray Ana I.1ORCID

Affiliation:

1. Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE) Universidad de la República Maldonado Uruguay

Abstract

Abstract Biodiversity emerges from niche mechanisms, in which the combination of traits determines species performance, and populations drift because of the inherent stochasticity of community assembly processes. Population biology dictates that small and isolated communities are more prone to show stochastic assemblages. However, a reduced mass effect in isolated communities may promote trait selection. In addition, large and connected communities have a larger species pool, higher functional redundancy, lower population sizes and more random recruitment, which also fosters stochasticity in community assembly. These contradictory expectations demand empirical analyses. Plant metacommunities in temporary ponds are assembled by the action of strong environmental filters and cover wide ranges of local community sizes and connectivity, representing ideal systems for identifying determinants of trait‐selection processes. Using a deviance partition method introduced by the theory of community assembly by trait selection, we evaluated the role of plant traits in local community assemblies along 60 communities from a 14‐year plant survey of temporary ponds. Variation in pond size, hydroperiod, connectitivity and heterogeneity determined a selection gradien in traits related to drought resistance, life history and disperal strategies; and also in the strength of trait‐mediated community assembly. The taxonomic and functional diversity of a pond and its physical heterogeneity fostered stochasticity in the assembly of the community, which also presented a hump‐shaped association with connectivity. The pond area increased taxonomic richness but decreased functional diversity, determining negative and positive indirect effects on stochasticity. Synthesis. Diversity provides the raw material for trait selection putatively reducing stochasticity, but here diversity was positively related to stochasticity. Having enough functional diversity, larger redundancy and lower population sizes in diverse communities is probably fostering stochastic assemblages. The hump‐shaped association between stochasticity and connectivity supports a larger role of trait selection in isolated systems due to a weak mass effect, but also on connected communities in which a set of more optimal traits for the selection scenario could be available. In the ongoing state of ecosystem fragmentation, these empirical trends contribute to the mechanistic understanding of the connection between landscape structure and biodiversity assembly.

Funder

Agencia Nacional de Investigación e Innovación

Comisión Sectorial de Investigación Científica

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3