Affiliation:
1. Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
2. Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
Abstract
Abstract
Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC.
Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool.
Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood.
Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies.
Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献