Plant diversity and functional identity drive grassland rhizobacterial community responses after 15 years of CO2 and nitrogen enrichment

Author:

Revillini Daniel12ORCID,Reich Peter B.345,Johnson Nancy Collins16

Affiliation:

1. Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA

2. Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS‐CSIC) Sevilla Spain

3. Department of Forest Resources University of Minnesota St. Paul Minnesota USA

4. Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia

5. School for Environment and Sustainability, Institute for Global Change Biology University of Michigan Ann Arbor Michigan USA

6. School of Earth and Sustainability Northern Arizona University Flagstaff Arizona USA

Abstract

Abstract Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses. This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2 (eCO2) and soil nitrogen (+N). Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3 and C4 grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes. Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups.

Funder

Division of Biological Infrastructure

National Institute of Food and Agriculture

Biological and Environmental Research

Division of Environmental Biology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3