Germination phenology alters species coexistence outcomes

Author:

Diez Jeff12ORCID,Schlauch Jen3,DuCharme Elysa2,Collings Jeremy1ORCID,Erskine Sarah1

Affiliation:

1. Department of Biology, Institute of Ecology and Evolution University of Oregon Eugene Oregon USA

2. Department of Botany & Plant Sciences University of California Riverside California USA

3. Department of Ecology and Evolutionary Biology University of California Irvine California USA

Abstract

Abstract Species‐specific phenological responses to changing climate are reshuffling the timing of species interactions, however we do not fully understand the consequences of these changes for species' population dynamics and community composition. In this study, we experimentally manipulated the timing of germination for five annual plant species from southern California and used pairwise competition experiments and coexistence theory to quantify how phenological shifts may impact species interactions and coexistence. We found that phenological shifts may help promote coexistence when they confer an advantage for competitively inferior species, but in other cases promote dominance by competitively superior species. Earlier germination generally increased species' performance relative to competitors, but the relative changes in intra‐and inter‐specific interactions caused more complex effects on niche and fitness differences. Phenological differences tended to reduce stabilising niche differences for many species pairs and reduced overall coexistence probabilities. Synthesis. While phenological differences among species have typically been considered a form of niche partitioning, it seems increasingly likely that phenological offsets could destabilise species coexistence. The net effects of changing phenology on species coexistence will depend on the complex combinations of effects on intra‐ and inter‐specific interactions, which remain challenging to predict.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3