Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem

Author:

Wei Bin12ORCID,Zhang Dianye1ORCID,Wang Guanqin12ORCID,Liu Yang1ORCID,Li Qinlu12,Zheng Zhihu12,Yang Guibiao1,Peng Yunfeng1ORCID,Niu Kechang3ORCID,Yang Yuanhe12ORCID

Affiliation:

1. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing 100093 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Department of Ecology, School of Life Sciences Nanjing University Nanjing 210023 China

Abstract

Summary Knowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above‐ and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7‐yr field warming experiment, we measured 26 above‐ and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau. Experimental warming shifted community‐level functional traits toward more acquisitive values, with earlier green‐up, greater plant height, larger leaves, higher photosynthetic resource‐use efficiency, thinner roots, and greater specific root length and root nutrient concentrations. However, warming had a negligible effect in terms of functional diversity. In addition, warming shifted hub traits which have the highest centrality in the network from specific root area to leaf area. These results demonstrate that above‐ and belowground traits exhibit consistent adaptive strategies, with more acquisitive traits in warmer environments. Such changes could provide an adaptive advantage for plants in response to environmental change.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3