Physical description and model validation of welded joint fatigue damage evolution

Author:

Wei Guoqian123,Zhao You2,Duan Ruochen3,Dang Zhang12,Lu Zhiwen13

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology Wuhan University of Science and Technology Wuhan China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering Wuhan University of Science and Technology Wuhan China

3. Precision Manufacturing Institute Wuhan University of Science and Technology Wuhan China

Abstract

AbstractFor welded structures, the concept of damage is highly abstract and difficult to describe, leading to a lack of physical foundation and universality for existing fatigue damage accumulation models. A new fatigue damage parameter definition based on remaining bearing capacity is proposed in this paper, which is constructed by the equivalent stress on the remaining bearing surface and the equivalent stress intensity factors along the crack front curve. Tension and three‐point bending fatigue tests under two‐level loading block sequences were conducted, and the real fatigue damage evolution processes were obtained by combining measured crack front information and FEA simulation. Five damage accumulation models were utilized to estimate the fatigue damage evolution processes of the two specimens. Results show that there are differences in describing the damage evolution processes and predicting the early fatigue lives. The Rege model is most consistent with the measured data, demonstrating its applicability and effectiveness.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3