Nutrient resorption responses of female and male Populus cathayana to drought and shade stress

Author:

Tang Shuanglei1,Lin Xiazhen2,Li Wen1,Guo Chengjin1,Han Jungang34,Yu Lei1ORCID

Affiliation:

1. Department of Ecology, College of Life and Environmental Sciences Hangzhou Normal University Hangzhou China

2. Teaching Center Zhejiang Open University Hangzhou China

3. Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Wuhan University Wuhan China

4. Department of Central Laboratory Affiliated Hospital of Jiaxing University Jiaxing China

Abstract

AbstractNutrient resorption can increase nutrient use and play important roles in terrestrial plant nutrient cycles. Although several studies have reported individual responses of plant nutrient resorption to drought or shade stress, the interaction of drought and shade remains unclear, especially for dioecious plants. This study explored whether nutrient resorption is correlated to growth characteristics (such as biomass and root/shoot ratio [R/S ratio]) and leaf economics (such as leaf thickness, leaf mass per area [LMA] and leaf vein density [LVD]) in female and male Populus cathayana across different conditions. We found that drought stress significantly increased nitrogen (N) resorption efficiency (NRE) in both sexes, but shade and interactive stress decreased NRE in P. cathayana females. Under drought stress, nutrient resorption was sexually dimorphic such that P. cathayana males have higher NRE than females. Furthermore, NRE and phosphorous (P) resorption efficiency (PRE) were positively related to R/S ratio, leaf thickness, LMA, and LVD in both sexes across different treatments. Our study is the first to present how nutrient resorption is related to biomass accumulation and allocation, and leaf economics, suggesting that nutrient uptake may be modulated by R/S ratio and leaf economics, which is important for understanding the conservation mechanism of plant nutrients.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3