AP‐1 is a regulatory transcription factor of inflammaging in the murine kidney and liver

Author:

Yu Xiaojie1,Wang Yuting1,Song Yifan1,Gao Xianda2,Deng Hongkui12ORCID

Affiliation:

1. The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences Peking University Beijing China

2. School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing China

Abstract

AbstractAging is characterized by chronic low‐grade inflammation in multiple tissues, also termed “inflammaging”, which represents a significant risk factor for many aging‐related chronic diseases. However, the mechanisms and regulatory networks underlying inflammaging across different tissues have not yet been fully elucidated. Here, we profiled the transcriptomes and epigenomes of the kidney and liver from young and aged mice and found that activation of the inflammatory response is a conserved signature in both tissues. Moreover, we revealed links between transcriptome changes and chromatin dynamics through integrative analysis and identified AP‐1 and ETS family transcription factors (TFs) as potential regulators of inflammaging. Further in situ validation showed that c‐JUN (a member of the AP‐1 family) was mainly activated in aged renal and hepatic cells, while increased SPI1 (a member of the ETS family) was mostly induced by elevated infiltration of macrophages, indicating that these TFs have different mechanisms in inflammaging. Functional data demonstrated that genetic knockdown of Fos, a major member of the AP‐1 family, significantly attenuated the inflammatory response in aged kidneys and livers. Taken together, our results revealed conserved signatures and regulatory TFs of inflammaging in the kidney and liver, providing novel targets for the development of anti‐aging interventions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3