Large‐Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC–MS measurements

Author:

Lassen Johan K.1ORCID,Wang Tingting2,Nielsen Kirstine L.2,Hasselstrøm Jørgen B.2,Johannsen Mogens2,Villesen Palle13

Affiliation:

1. Bioinformatics Research Center Aarhus University Aarhus Denmark

2. Department of Forensic Medicine Aarhus University Aarhus Denmark

3. Department of Clinical Medicine Aarhus University Aarhus Denmark

Abstract

AbstractUntargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age—a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra‐high pressure liquid chromatography‐quadruple time of flight mass spectrometry (UHPLC‐ QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small‐scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years (r2 = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole‐3‐aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu‐pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large‐s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC‐MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.

Funder

Aarhus Universitets Forskningsfond

Innovationsfonden

Publisher

Wiley

Subject

Cell Biology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3