Uppermost global tree elevations are primarily limited by low temperature or insufficient moisture

Author:

Xie Yuyang1ORCID,Shen Zehao1ORCID,Wang Tao2ORCID,Malanson George P.3ORCID,Peñuelas Josep45ORCID,Wang Xiaoyi2ORCID,Chen Xiangwu1,Liang Eryuan2ORCID,Liu Hongyan1ORCID,Yang Mingzheng1ORCID,Ying Lingxiao16,Zhao Fu1,Piao Shilong1ORCID

Affiliation:

1. College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes Peking University Beijing China

2. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China

3. Department of Geography University of Iowa Iowa USA

4. CREAF, Cerdanyola del Vallès Barcelona Catalonia Spain

5. CSIC, Global Ecology Unit CREAF‐CSIC‐UAB Barcelona Catalonia Spain

6. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China

Abstract

AbstractThe impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi‐observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing‐season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two‐thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.

Funder

National Natural Science Foundation of China

Fundación Ramón Areces

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3