Microbial evolution—An under‐appreciated driver of soil carbon cycling

Author:

Abs Elsa12ORCID,Chase Alexander B.3,Manzoni Stefano4ORCID,Ciais Philippe2,Allison Steven D.15ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of California, Irvine Irvine California USA

2. Laboratoire Des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette France

3. Department of Earth Sciences Southern Methodist University Dallas Texas USA

4. Department of Physical Geography and Bolin Centre for Climate Research Stockholm University Stockholm Sweden

5. Department of Earth System Science University of California, Irvine Irvine California USA

Abstract

AbstractAlthough substantial advances in predicting the ecological impacts of global change have been made, predictions of the evolutionary impacts have lagged behind. In soil ecosystems, microbes act as the primary energetic drivers of carbon cycling; however, microbes are also capable of evolving on timescales comparable to rates of global change. Given the importance of soil ecosystems in global carbon cycling, we assess the potential impact of microbial evolution on carbon‐climate feedbacks in this system. We begin by reviewing the current state of knowledge concerning microbial evolution in response to global change and its specific effect on soil carbon dynamics. Through this integration, we synthesize a roadmap detailing how to integrate microbial evolution into ecosystem biogeochemical models. Specifically, we highlight the importance of microscale mechanistic soil carbon models, including choosing an appropriate evolutionary model (e.g., adaptive dynamics, quantitative genetics), validating model predictions with ‘omics’ and experimental data, scaling microbial adaptations to ecosystem level processes, and validating with ecosystem‐scale measurements. The proposed steps will require significant investment of scientific resources and might require 10–20 years to be fully implemented. However, through the application of multi‐scale integrated approaches, we will advance the integration of microbial evolution into predictive understanding of ecosystems, providing clarity on its role and impact within the broader context of environmental change.

Funder

H2020 Marie Skłodowska-Curie Actions

H2020 European Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3