The small‐molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti‐inflammatory in mouse precision‐cut lung slices

Author:

Studley William R.1ORCID,Lamanna Emma1,Martin Katherine A.1,Nold‐Petry Claudia A.23ORCID,Royce Simon G.1ORCID,Woodman Owen L.4ORCID,Ritchie Rebecca H.145ORCID,Qin Cheng Xue45ORCID,Bourke Jane E.1ORCID

Affiliation:

1. Department of Pharmacology, Biomedicine Discovery Institute Monash University Clayton Victoria Australia

2. Department of Paediatrics Monash University Clayton Victoria Australia

3. Ritchie Centre Hudson Institute of Medical Research Clayton Victoria Australia

4. Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia

5. Baker Heart and Diabetes Institute Melbourne Victoria Australia

Abstract

AbstractBackground and PurposePulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G‐protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti‐inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision‐cut lung slices (PCLS).Experimental ApproachPCLS from 8‐week‐old male and female C57BL/6 mice, intrapulmonary arteries were pre‐contracted with 5‐HT for concentration–response curves to compound 17b and 43, and standard‐of‐care drugs, sildenafil, iloprost and riociguat. Compound 17b‐mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF‐α or LPS. Cytokine release from TNF‐α‐ or LPS‐treated PCLS ± compound 17b was measured.Key ResultsCompound 17b elicited concentration‐dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH‐relevant cytokines via FPR2.Conclusions and ImplicationsVasodilation to compound 17b but not standard‐of‐care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH‐relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR‐based pharmacotherapy to treat PAH.

Funder

National Health and Medical Research Council

Publisher

Wiley

Subject

Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3