One Size Does Not Fit All: Idiographic Computational Models Reveal Individual Differences in Learning and Meta‐Learning Strategies

Author:

Haile Theodros M.1,Prat Chantel S.1,Stocco Andrea1

Affiliation:

1. Department of Psychology University of Washington Seattle

Abstract

AbstractComplex skill learning depends on the joint contribution of multiple interacting systems: working memory (WM), declarative long‐term memory (LTM) and reinforcement learning (RL). The present study aims to understand individual differences in the relative contributions of these systems during learning. We built four idiographic, ACT‐R models of performance on the stimulus‐response learning, Reinforcement Learning Working Memory task. The task consisted of short 3‐image, and long 6‐image, feedback‐based learning blocks. A no‐feedback test phase was administered after learning, with an interfering task inserted between learning and test. Our four models included two single‐mechanism RL and LTM models, and two integrated RL‐LTM models: (a) RL‐based meta‐learning, which selects RL or LTM to learn based on recent success, and (b) a parameterized RL‐LTM selection model at fixed proportions independent of learning success. Each model was the best fit for some proportion of our learners (LTM: 68.7%, RL: 4.8%, Meta‐RL: 13.25%, bias‐RL:13.25% of participants), suggesting fundamental differences in the way individuals deploy basic learning mechanisms, even for a simple stimulus‐response task. Finally, long‐term declarative memory seems to be the preferred learning strategy for this task regardless of block length (3‐ vs 6‐image blocks), as determined by the large number of subjects whose learning characteristics were best captured by the LTM only model, and a preference for LTM over RL in both of our integrated‐models, owing to the strength of our idiographic approach.

Funder

Office of Naval Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3