Disulfiram relieves severe acute pancreatitis by inhibiting GSDMD‐dependent NETs formation

Author:

Ling Xin1ORCID,Nie Chi1,Sheng Li Ping1ORCID,Han Chao Qun1,Ding Zhen2ORCID

Affiliation:

1. Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China

2. Division of Gastroenterology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou Guangdong Province China

Abstract

ObjectivesSevere acute pancreatitis (SAP) is characterized by pancreatic and systemic inflammation and persistent organ failure. Neutrophil extracellular traps (NETs) are considered to play an important role in the development of SAP. We aimed to explore the effect of disulfiram (DSL), a newly developed anti‐inflammatory drug, on NETs in SAP.MethodsA mouse model of SAP was induced by caerulein and lipopolysaccharide, and the mice were divided into the normal control group, the DSL group, the SAP group, and the SAP treated with 50 mg/kg (50DSLSAP) and 100 mg/kg DSL (100DSLSAP) groups, respectively. The severity of SAP was evaluated based on the morphological and biochemical changes. Gasdermin D (GSDMD) expression was evaluated in vivo and in vitro to verify the effect of DSL. Additionally, the expressions of NETs were also evaluated in vivo and in vitro in SAP with and without DSL treatment to explore the possible mechanism of DSL on SAP.ResultsPancreatic inflammatory injury increased in the SAP group, which was alleviated by DSL. GSDMD, a protein related to the formation of NETs, increased in SAP. Expressions of NETs were also promoted in the in vivo SAP model and by phorbol myristate acetate (PMA) in vitro. Moreover, DSL inhibited the expressions of GSDMD and NETs in vivo. The results were further confirmed in the in vitro experiment.ConclusionsNETs are highly associated with inflammatory injury in SAP. DSL inhibits NETs formation by downregulating GSDMD, which in turn relieves the inflammation of SAP. Our study may provide a possible therapeutic target for SAP.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3