Meiotic pairing irregularity and homoeologous chromosome compensation cause rapid karyotype variation in synthetic allotetraploid wheat

Author:

Zhao Jing1ORCID,Li Juzuo1ORCID,Lv Ruili1ORCID,Wang Bin1,Zhang Zhibin1,Yu Tingting1,Liu Shuhan1,Xun Hongwei1,Xu Chunming1ORCID,Wendel Jonathan F.2ORCID,Liu Bao1ORCID

Affiliation:

1. Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE) Northeast Normal University Changchun 130024 China

2. Department of Ecology, Evolution & Organismal Biology Iowa State University Ames IA 50011 USA

Abstract

Summary Allopolyploidization may initiate rapid evolution due to heritable karyotypic changes. The types and extents of these changes, the underlying causes, and their effects on phenotype remain to be fully understood. Here, we designed experimental populations suitable to address these issues using a synthetic allotetraploid wheat. We show that extensive variation in both chromosome number (NCV) and structure (SCV) accumulated in a selfed population of a synthetic allotetraploid wheat (genome SbSbDD). The combination of NCVs and SCVs generated massive organismal karyotypic heterogeneity. NCVs and SCVs were intrinsically correlated and highly variable across the seven sets of homoeologous chromosomes. Both NCVs and SCVs stemmed from meiotic pairing irregularity (presumably homoeologous pairing) but were also constrained by homoeologous chromosome compensation. We further show that homoeologous meiotic pairing was positively correlated with sequence synteny at the subtelomeric regions of both chromosome arms, but not with genic nucleotide similarity per se. Both NCVs and SCVs impacted phenotypic traits but only NCVs caused significant reduction in reproductive fitness. Our results implicate factors influencing meiotic homoeologous chromosome pairing and reveal the type and extent of karyotypic variation and its immediate phenotypic manifestation in synthetic allotetraploid wheat. This has relevance for our understanding of allopolyploid evolution.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3