Revisiting a central prediction of the Gill Oxygen Limitation Theory: Gill area index and growth performance

Author:

Bigman Jennifer S.1ORCID,Wegner Nicholas C.2ORCID,Dulvy Nicholas K.1ORCID

Affiliation:

1. Earth to Ocean Research Group Simon Fraser University Burnaby British Columbia Canada

2. Fisheries Resources Division Southwest Fisheries Science Center, NOAA La Jolla California USA

Abstract

AbstractThe Gill Oxygen Limitation Theory (GOLT) posits that a mismatch in oxygen supply and demand stemming from geometric constraints on gill surface area limits metabolic rate and energy available for biological processes. This theory has been suggested to explain numerous phenomena observed with warming yet is based upon a relationship among maximum size, growth, and gill surface area established over 40 years ago. However, the metric used in this relationship to characterize gill surface area, gill area index, fails to capture the known variability in the scaling of gill surface area and is biased by the sizes at which gills were measured. Here, we revisit a central prediction of the GOLT, asking four key questions that examine limitations in the original relationship. We find that gill area index does indeed explain variation in growth performance across 132 species of fish and this relationship is strikingly similar to the original relationship across 42 species. Yet, we argue that gill area index is not an adequate measure of gill surface area because (1) gill surface area has a non‐linear relationship with size and, thus, changes ontogenetically as an individual grows over time and (2) because it is based on mean estimates of both gill surface area and body mass. Indeed, we show that the value of gill area index for a given species is variable depending on how it is calculated. We therefore suggest a pathway forward for assessing whether gill surface area is an important factor in explaining variation in growth performance.

Funder

National Science Foundation of Sri Lanka

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3