Affiliation:
1. Helmholtz Centre for Environmental Research GmbH – UFZ Halle (Saale) Germany
2. Lebenswissenschaftliche Fakultät Institut für Agrar‐und Stadtökologische Projekte an der Humboldt‐Universität zu Berlin (IASP) Berlin Germany
3. Agronomy and Crop Science University of Rostock Rostock Germany
4. Agricultural Analytical and Research Institute Speyer (LUFA Speyer) Speyer Germany
Abstract
AbstractPhosphorus is a nonrenewable resource, which is required for crop growth and to maintain high yields. The soil P cycle is very complex, and new model approaches can lead to a better understanding of those processes and further guide to research gaps. The objective of this study was to present a P‐submodel, which has been integrated in the existing Carbon Candy Balance (CCB) model that already comprises a C and N module. The P‐module is linked to the C mineralization and the associated C‐pools via the C/P ratio of fresh organic material. Besides the organic P cycling, the module implies a plant‐available P‐pool (Pav), which is in a dynamic equilibrium with the nonavailable P‐pool (Pna) that comprises the strongly sorbed and occluded P fraction. The model performance was tested and evaluated on four long‐term field experiments with mineral P fertilization, farmyard manure as organic fertilizer and control plots without fertilization. The C dynamics and the Pav dynamics were modelled with overall good results. The relative RMSE for the C was below 10% for all treatments, while the relative RMSE for Pav was below 15% for most treatments. To accommodate for the rather small variety of available P‐models, the presented CNP‐model is designed for agricultural field sites with a relatively low data input, namely air temperature, precipitation, soil properties, yields and management practices. The CNP‐model offers a low entry threshold model approach to predict the C‐N and now the P dynamics of agricultural soils.
Funder
Fachagentur Nachwachsende Rohstoffe
Subject
Pollution,Soil Science,Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献