Population recovery of a migratory anadromous fish in a small forest stream following restoration of longitudinal connectivity

Author:

Kiffney Peter M.1ORCID,Anderson Joseph H.2,Liermann Martin C.1,Jones Erin L.3ORCID,Pess George R.1,Kretschmer Frances4

Affiliation:

1. National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division National Oceanic and Atmospheric Administration 2275 Montlake Boulevard East Seattle WA 98112 U.S.A.

2. Washington Department of Fish and Wildlife PO Box 43200 Olympia WA 98504‐3200 U.S.A.

3. Graduate School of Oceanography University of Rhode Island Kingston RI U.S.A.

4. Environmental Science and Policy Smith College Northampton MA U.S.A.

Abstract

Restoration of movement corridors is a key management action used to address threats to migratory and other mobile species. Yet, we lack restoration effectiveness studies that allow for species to reestablish naturally (i.e. without supplementation) following habitat reconnection that capture all phases (dispersal, growth, and regulation) of recovery, and that takes an ecosystems approach. We investigated the natural recovery of migratory anadromous Coho salmon following habitat reconnection across a 5‐km section of Rock Creek, a forested tributary of the Cedar River, Washington, United States, 3 km upstream of Landsburg Dam. The dam blocked upstream fish movement for 102 years until the completion of a fish ladder in 2003. We also evaluated the response of non‐migratory trout, which are closely related to Coho salmon. Juvenile Coho salmon natal to the Cedar River dispersed into Rock Creek for rearing until spawning there in 2007. After restoration, juvenile Coho salmon density (fish/m2) increased 18‐fold, approaching an asymptote (i.e. regulation phase) a decade later. Coho salmon recovery in Rock Creek was spatially variable, however, slowing with distance from the site of restoration. Trout density was also higher after restoration relative to before, likely due to several mechanisms, including increased capacity resulting from the reestablishment of marine organic matter subsidies delivered by spawning anadromous fish. Our study demonstrates that migratory species can recover naturally after the restoration of habitat connectivity and associated movement corridors. Furthermore, our results suggest that such actions can also benefit nontarget species by reestablishing key ecosystem links driven by the target species.

Funder

Seattle Public Utilities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3