GOLDEN2‐like1 is sufficient but not necessary for chloroplast biogenesis in mesophyll cells of C4 grasses

Author:

Lambret‐Frotte Julia1,Smith Georgia1,Langdale Jane A.1ORCID

Affiliation:

1. Department of Biology University of Oxford South Parks Road OX1 3RB Oxford UK

Abstract

SUMMARYChloroplasts are the site of photosynthesis. In land plants, chloroplast biogenesis is regulated by a family of transcription factors named GOLDEN2‐like (GLK). In C4 grasses, it has been hypothesized that genome duplication events led to the sub‐functionalization of GLK paralogs (GLK1 and GLK2) to control chloroplast biogenesis in two distinct cell types: mesophyll and bundle sheath cells. Although previous characterization of golden2 (g2) mutants in maize has demonstrated a role for GLK2 paralogs in regulating chloroplast biogenesis in bundle sheath cells, the function of GLK1 has remained elusive. Here we show that, contrary to expectations, GLK1 is not required for chloroplast biogenesis in mesophyll cells of maize. Comparisons between maize and Setaria viridis, which represent two independent C4 origins within the Poales, further show that the role of GLK paralogs in controlling chloroplast biogenesis in mesophyll and bundle sheath cells differs between species. Despite these differences, complementation analysis revealed that GLK1 and GLK2 genes from maize are both sufficient to restore functional chloroplast development in mesophyll and bundle sheath cells of S. viridis mutants. Collectively our results suggest an evolutionary trajectory in C4 grasses whereby both orthologs retained the ability to induce chloroplast biogenesis but GLK2 adopted a more prominent developmental role, particularly in relation to chloroplast activation in bundle sheath cells.

Funder

Bill and Melinda Gates Foundation

Biotechnology and Biological Sciences Research Council

Newton Fund

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3