A stratagem for primary root elongation under moderate salt stress in the halophyte Schrenkiella parvula

Author:

Şekerci Keriman1,Higashitani Nahoko1,Ozgur Rengin12,Uzilday Baris12ORCID,Higashitani Atsushi1ORCID,Turkan Ismail2ORCID

Affiliation:

1. Graduate School of Life Sciences, Tohoku University Sendai Japan

2. Department of Biology, Faculty of Science Ege University İzmir Türkiye

Abstract

AbstractSchrenkiella parvula, an Arabidopsis‐related halophyte, grows around Lake Tuz (Salt) in Turkey and can survive up to 600 mM NaCl. Here, we performed physiological studies on the roots of S. parvula and A. thaliana seedlings cultivated under a moderate salt condition (100 mM NaCl). Interestingly, S. parvula germinated and grew at 100 mM NaCl, but germination did not occur at salt concentrations above 200 mM. In addition, primary roots elongated much faster at 100 mM NaCl, while being thinner with fewer roots hair, than under NaCl‐free conditions. Salt‐induced root elongation was due to epidermal cell elongation, but meristem size and meristematic DNA replication were reduced. The expression of genes related to auxin response and biosynthesis was also reduced. Application of exogenous auxin abolished the changes in primary root elongation, suggesting that auxin reduction is the main trigger for root architectural changes in response to moderate salinity in S. parvula. In A. thaliana seeds, germination was maintained up to 200 mM NaCl, but post‐germination root elongation was significantly inhibited. Furthermore, primary roots did not promote elongation even under fairly low salt conditions. Compared to A. thaliana, cell death and ROS content in primary roots of salt‐stressed plants were significantly lower in S. parvula. These changes in the roots of S. parvula seedlings may be an adaptive strategy to reach lower salinity by advancing into deeper soils, while being impaired by moderate salt stress.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3