Influence of P-glycoprotein on the disposition of fexofenadine and its enantiomers

Author:

Li Fei1,Howard Karyn D1,Myers Michael J1

Affiliation:

1. Division of Applied Veterinary Research, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA

Abstract

Abstract Objectives P-glycoprotein (P-gp) is responsible for the efflux of a broad variety of human and veterinary drugs. Canine P-gp polymorphisms alter drug disposition and toxicity, but their impact on the disposition of enantiomeric drugs is unknown. Using fexofenadine as a model compound, we developed and validated HPLC–fluorescence methods to determine the effect of P-gp on the disposition of fexofenadine and its enantiomers. Methods A chiral CD-Ph column was used for the separation of (R) and (S)-fexofenadine. Determination of racemic fexofenadine was achieved on an XDB-CN column. Fexofenadine and its enantiomers were detected by fluorescence at the excitation wavelength of 220 nm and emission wavelength of 300 nm. These methods were used to measure concentrations of fexofenadine and its enantiomers in Collie plasma after oral administration. Key findings This study demonstrates that P-gp prefers to transport (S)-fexofenadine, and P-gp deficiency causes the increase in both (R)-fexofenadine and (S)-fexofenadine in plasma. Racemic fexofenadine, (R)-fexofenadine and (S)-fexofenadine were increased in ABCB1-1Δ Collies (118.7, 72.0 and 48.3 ng/ml) compared to wild-type Collies (25.0, 16.5 and 7.7 ng/ml) at 1 h postadministration. The results demonstrate that the stereoselectivity of P-gp plays a key role in the disposition of fexofenadine enantiomers. Conclusions The information derived from this drug model will be used to determine whether additional safety or efficacy requirements are necessary for enantiomeric drugs that would be used in dogs or humans.

Funder

Intramural Research Program of the Center for Veterinary Medicine

Food and Drug Administration

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3