Affiliation:
1. Division of Applied Veterinary Research, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
Abstract
Abstract
Objectives
P-glycoprotein (P-gp) is responsible for the efflux of a broad variety of human and veterinary drugs. Canine P-gp polymorphisms alter drug disposition and toxicity, but their impact on the disposition of enantiomeric drugs is unknown. Using fexofenadine as a model compound, we developed and validated HPLC–fluorescence methods to determine the effect of P-gp on the disposition of fexofenadine and its enantiomers.
Methods
A chiral CD-Ph column was used for the separation of (R) and (S)-fexofenadine. Determination of racemic fexofenadine was achieved on an XDB-CN column. Fexofenadine and its enantiomers were detected by fluorescence at the excitation wavelength of 220 nm and emission wavelength of 300 nm. These methods were used to measure concentrations of fexofenadine and its enantiomers in Collie plasma after oral administration.
Key findings
This study demonstrates that P-gp prefers to transport (S)-fexofenadine, and P-gp deficiency causes the increase in both (R)-fexofenadine and (S)-fexofenadine in plasma. Racemic fexofenadine, (R)-fexofenadine and (S)-fexofenadine were increased in ABCB1-1Δ Collies (118.7, 72.0 and 48.3 ng/ml) compared to wild-type Collies (25.0, 16.5 and 7.7 ng/ml) at 1 h postadministration. The results demonstrate that the stereoselectivity of P-gp plays a key role in the disposition of fexofenadine enantiomers.
Conclusions
The information derived from this drug model will be used to determine whether additional safety or efficacy requirements are necessary for enantiomeric drugs that would be used in dogs or humans.
Funder
Intramural Research Program of the Center for Veterinary Medicine
Food and Drug Administration
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献