Infrastructure deterioration modeling with an inhomogeneous continuous time Markov chain: A latent state approach with analytic transition probabilities

Author:

Mizutani Daijiro1,Yuan Xian‐Xun2

Affiliation:

1. Department of Civil and Environmental Engineering Tohoku University Sendai Miyagi Japan

2. Department of Civil Engineering Toronto Metropolitan University Toronto Canada

Abstract

AbstractMarkov chains have been widely used to characterize performance deterioration of infrastructure assets, to model maintenance effectiveness, and to find the optimal intervention strategies. For long‐lived assets such as bridges, the time‐homogeneity assumptions of Markov chains should be carefully checked. For this purpose, this research proposes a regime‐switching continuous‐time Markov chain of which the state transition probabilities depend on another, latent, Markov chain that characterizes the overall aging regime of an asset. With the aid of a state‐augmentation technique, closed‐form solutions for the transition probabilities are analytically derived, making the statistical analysis simple. A case study is presented using the open Ontario Bridge Condition data for provincial highway bridges. The case study demonstrates that the proposed method allows to (1) estimate a statistically superior model to the homogeneous Markov chain and (2) obtain results with comparable accuracy in approximately 48% of the computation time of the state‐of‐the‐art inhomogeneous Markov chain.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3