Affiliation:
1. Faculty of Engineering and Design Kagawa University Kagawa Japan
2. Graduate School of Science and Engineering Saitama University Saitama Japan
3. Structural Engineering Department Port and Airport Research Institute Yokosuka Kanagawa Japan
Abstract
AbstractThe data acquired in civil engineering tasks often involve high acquisition costs, and the available datasets tend to have a limited number of samples and are highly biased. To estimate the performance of machine learning models, k‐fold cross‐validation (k‐CV) is widely used. However, if only limited data are available and the data distribution is biased, k‐CV tends to overestimate the performance for practical applications. This study proposed a new estimator, leave one reference out and k‐CV (LORO‐k‐CV), to determine the practical performance of machine learning models, that is, the generalization performance for population data in the target task, in case data are collected by multiple references resulting in biased data. LORO‐k‐CV is a combination of a new concept, LORO‐CV, that estimates the performance in the extrapolation region of the training data without human intervention and k‐CV, considering the ratio of the interpolation and extrapolation regions. The efficacy of LORO‐k‐CV was validated with its application to the regression task for the chloride‐ion concentration of concrete structures. To more specifically demonstrate the advantages of LORO‐k‐CV in model construction, the feature selections were conducted using both k‐CV and LORO‐k‐CV methods. These results revealed that LORO‐k‐CV can effectively construct a model with improved generalization performance even from the same data in cases where data are collected by multiple references, resulting in biased data.
Subject
Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献